Curso de Nutrición y Dietética gratuito. Con autoevaluación final. Para aprender sobre los nutrientes, la digestión o el metabolismo.

hidratos

Hidratos de Carbono


Hidratos de Carbono: Clasificación, funciones y recomendaciones

Los hidratos de carbono, también denominados glúcidos, deben su nombre a su composición: carbono, hidrógeno y oxígeno.

Si los clasificamos en base al número de moléculas que poseen, los hidratos de carbono se clasifican en monosacáridos, oligosacáridos y polisacáridos, de una, dos o más y muchas moléculas respectivamente.

Clasificación de los Hidratos de Carbono

Monosacáridos

Están formados por una sola molécula.

Glucosa

Es el hidrato de carbono que nuestro cuerpo utiliza como fuente de energía. Los hidratos de carbono de nuestra dieta son digeridos hasta glucosa. El almidón de nuestra dieta es atacado por todas las enzimas digestivas hasta romperlo en moléculas sencillas de glucosa.

Se encuentra en las uvas y en pequeñas cantidades en las frutas y algunas hortalizas.

Fructosa

Es el monosacárido más dulce. Se encuentra en cantidades relativamente altas en las frutas y algunos vegetales, y en la miel, que es una mezcla de glucosa y fructosa.

Ribosa y desoxirribosa

Carecen de importancia como monosacáridos de los que obtener energía.

Nada más lejos, la ribosa y desoxirribosa son componentes fundamentales de algo tan complejo como el ADN y del ARN o ácido ribonucleico, ambos componentes celulares fundamentales que permiten la la completa y adecuada gestión, eficacia y organización celular.

Galactosa

Se encuentra únicamente en la leche, formando lactosa junto a la glucosa.

monosacáridos

Disacáridos

Sacarosa

Es el azúcar de mesa o azúcar blanquilla. Está formado por una molécula de fructosa y una de glucosa.
Se encuentra en gran proporción en la remolacha azucarera y la caña de azúcar, así como en otros vegetales.

Lactosa

Está formado por una molécula de galactosa y una de glucosa. Se encuentra en la leche y en menor proporción en derivados.

Maltosa

También llamado azúcar de malta. Está formado por dos moléculas de glucosa. Se obtiene por hidrólisis industrial del almidón.

disacáridos

Oligosacáridos

Están formados por tres o más moléculas. Los sacáridos formados por dos moléculas se denominan también disacáridos y en realidad son más importantes que los oligosacáridos, de tres o más moléculas.

Maltodextrinas

Son sacáridos de alrededor de 10 moléculas. Se obtiene por hidrólisis parcial del almidón en proceso industrial, y se utiliza en alimentos y papillas infantiles. Ya que se trata de un almidón hidrolizado o parcialmente digerido, no es dulce ni produce picos de azúcar, pero a la vez es más fácilmente digerible porque las cadenas de moléculas son más cortas que en el almidón.

Polisacáridos

Están formados por cadenas muy largas de moléculas de hidratos de carbono simples.

Desde el punto de vista nutricional, se diferencia dos tipos:

  1. Polisacáridos digeribles o utilizables energéticamente, y
  2. Polisacáridos no digeribles o no utilizables energéticamente

1. Polisacáridos digeribles

Almidón

De origen vegetal, es una sucesión de glucosas en cadenas extremadamente largas. Estas cadenas, pueden ser lineales, en cuyo caso el almidón se denomina amilosa, o con algunas ramificaciones, denominándose amilopectinas.

Es el hidrato de carbono que utilizan los vegetales como reserva y es exclusivo de el reino vegetal. Los animales no pueden fabricar almidón.

Glucógeno

Es el hidrato de carbono que utilizan los animales como reserva, y es una sucesión de glucosas en cadenas extremadamente largas. Se encuentra en hígado y músculo, pero puesto que el almacenamiento de energía animal se realiza en forma de grasa, el glucógeno en los alimentos no suele suponer un valor nutricional importante o relevante.

almidones

2. Polisacáridos no digeribles

Todos ellos y algunos otros forman parte de la denominada fibra dietética.
Si bien su valor nutricional no es importante, si su efecto sobre el tracto digestivo y la propia digestión.

Celulosa

Está formado por cadenas de glucosa en linea; sin embargo esta unión es diferente a la del almidón, y las enzimas y jugos digestivos del cuerpo humano no pueden digerirla para convertirla en moléculas de glucosa. Se encuentra en las paredes celulares de los vegetales. Su valor radica como componente de la fibra alimenticia.

Hemicelulosa

Son cadenas o polímeros de diferentes pentosas, -hidratos de carbono de 5 átomos de carbono-. Son también exclusivos del reino vegetal.

Pectina

Se encuentra en la parte carnosa de las frutas. Tiene valor para la elaboración de mermeladas y confituras…

Gomas

Son polímeros de diferentes hidratos de carbono, principalmente secreciones de las plantas..

Mucílagos

Se obtienen principalmente de algas, y se utilizan en industria alimentaria como espesantes.

Lignina

Es un polímero de cadena ramificada presente en las parte leñosas de vegetales.

Funciones de los Hidratos de Carbono

Los hidratos de carbono poseen fundamentalmente tres funciones:

1. Función Energética

Proporcionan 4 calorías por gramo.

Pueden almacenarse como glucógeno y grasa

La glucosa en concreto es la única fuente de energía utilizable por el cerebro, sistema nervioso y células sanguíneas

2. Regulación metabólica

Impiden la movilización excesiva de grasas

Impiden la degradación de proteínas musculares

3. Regulación digestiva

La fermentación de la lactosa en el intestino parece favorecer el desarrollo de la flora intestinal adecuada.

La fibra alimentaria juega un papel muy importante:

Absorbe agua, facilitando el tránsito intestinal y permitiendo heces más blandas que facilitan los procesos fermentativos

Tiene efecto saciante, por lo que ayuda a evitar una ingesta excesiva

Protege la mucosa frente a agentes potencialmente cancerígenos y reduce el tiempo de contacto entre ambos

Absorben o impiden la absorción del colesterol

Digestión de los Hidratos de Carbono

La digestión de los hidratos de carbono comienza en la boca, gracias a la acción de la amilasa salivar. Sin embargo su acción es poco importante y sólo sirve de preparación.

La amilasa salivar pierde su efectividad al entrar en el estómago en contacto con los ácidos, por lo que la digestión de los hidratos se paraliza temporalmente en el estómago

Tras el vaciado gástrico, se vierte en el duodeno la amilasa pancreática degrada los almidones a moléculas de glucosa, maltosa y oligosacáridos.
Antes de pasar a ser distribuidos a la sangre como glucosa, todos son transformados por las células intestinales, que introducen las resultantes moléculas de glucosa en el torrente sanguíneo. Esto se produce principalmente en el yeyuno. Del total de hidratos de carbono, al menos el 90% termina siendo digerido hasta glucosa, que se utilizará como forma de energía y como base para otras sustancias.

Si tenemos en cuenta su comportamiento digestivo, podemos diferenciar hidratos de carbono lentos e hidratos de carbono rápidos. Los lentos se corresponden a los hidratos de carbono complejos, es decir, de largas cadenas. Los hidratos rápidos, están formados por azúcares sencillos de una o dos moléculas.

Metabolismo de los Hidratos de Carbono

La glucosa es una fuente de energía universal para todas las células de nuestro organismo. Aunque algunas células sólo pueden utilizar glucosa y no grasas como fuente de energía, todas pueden obtener energía a partir de glucosa.

Ésta se encuentra continuamente siendo utilizada en nuestro organismo. En presencia de oxígeno, es decir en condiciones normales, la glucosa se quema para obtener energía, CO2 que es expulsado por los pulmones y agua. Este proceso se denomina glucolisis.

En ausencia de oxígeno, por ejemplo en situaciones de esfuerzo intenso o prolongado, al no haber suficiente oxígeno la glucosa se utiliza parcialmente y de forma menos eficaz, rindiendo unas 20 veces menos de energía y formándose cristales de ácido láctico.

El cuerpo humano almacena la glucosa en forma de largas cadenas formando glucógeno. El glucógeno se almacena en hígado y músculo en pequeñas proporciones. Una vez se completan los depósitos de glucógeno, la glucosa sufre una serie de transformaciones y se almacena en forma de grasa.

El glucógeno se hidroliza y se libera la glucosa en el momento en que sea necesaria. En los momentos entre ingestas, el glucógeno garantiza un adecuado aporte de glucosa a todas las células. Los tejidos que pueden utilizar otras fuentes de energía como las grasas, dejan los depósitos de glucógeno hepático libres para aquellas que sólo pueden utilizar glucosa: células del sistema nervioso y sanguíneo.

Los niveles de glucosa se mantiene constantes gracias a la insulina. La insulina se secreta en la ingesta, promoviendo el almacenamiento de glucosa, la formación de glucógeno o la glucogenogénesis.

El alto consumo de azúcares simples, monosacáridos y disacáridos, puede provocar aparición de diversas patologías.

Asímismo, un consumo insuficiente de fibra también se ha relacionado con mayor incidencia de enfermedades como:

  • Cáncer de cólon
  • Estreñimiento
  • Hemorroides
  • Apendicitis aguda
  • Diverticulosis

Requerimientos y Recomendaciones Nutricionales de Hidratos de Carbono

El aporte de hidratos de carbono de la dieta equilibrada debe suponer entre el 45 y el 60 % del total energético diario.

Se debe consumir con preferencia hidratos de carbono complejos. Se aconseja alternar alimentos ricos en fibra con alimentos refinados.

El máximo diario de azúcares sencillos no debe superar el 10 % del total energético diario. En todo caso debe limitarse a su uso como edulcorante.


Otras entradas del Curso de Nutrición y Dietética:

Introducción a la NutriciónProteínas
Absorción de NutrientesHidratos de Carbono
Digestión de NutrientesGrasas, Lípidos
Utilización y metabolismo de NutrientesSales Minerales
 El AguaVitaminas

Y además: realice la Autoevaluación con una Prueba de valoración conocimiento


Ayude a difundirlo:

Compártelo con tus amig@s:
acidos grasos

Grasas o Lípidos


Grasas o Lípidos: Funciones, Digestión y Recomendaciones

Las grasas o lípidos son un grupo variado de sustancias, aunque todas ellas comparten la misma característica: ser insolubles en agua y solubles en disolventes orgánicos como éter y cloroformo.

Triglicéridos

Los triglicéridos están formados por tres ácidos grasos y glicerol unidos entre sí por un enlace químico de tipo éster.

Son las grasas típicas: la grasa visible y la de depósito son triglicéridos formados por diferentes ácidos grasos.

Los ácidos grasos que pueden formar parte de los triglicéridos pueden ser de 3 tipos, atendiendo al tipo de enlaces y número de enlaces dobles y triples entre los átomos de carbono:

1. Ácidos Grasos Saturados

En los ácidos grasos saturados, todos los átomos de carbono de la molécula se encuentran unidos a átomos de hidrógeno por enlaces químicos sencillos: un átomo de carbono aporta un electrón al enlace, mientras que el átomo de hidrógeno aporta el otro. Ambos comparten el electrón formándose un enlace sencillo.

Se llaman ácidos grasos saturados porque todos sus átomos se carbono se encuentran saturados por átomos de hidrógeno.

2. Ácidos Grasos Monoinsaturados

Los ácidos grasos monoinstaurados poseen un sólo enlace insaturado en su estructura.

El átomo de carbono se une a su vecino mediante un enlace doble en lugar de unirse a un átomo de hidrógeno más.

3. Ácidos Grasos Poliinsaturados

Son los ácidos grasos en los que existen dos o más enlaces dobles entre varios átomos de carbono.

Las denominadas genéricamente grasas son sustancias sólidas a temperatura ambiente. Esto se debe a que están compuestas principalmente por ácidos grasos saturados.

Los aceites sin embargo son líquidos a temperatura ambiente porque son ricos en ácidos grasos monoinsaturados y poliinsaturados.

La existencia y posición de los dobles enlaces entre lo átomos de carbono es el responsable de las diferentes propiedades fisicoquímicas.

ácidos grasos

Tipos de ácidos grasos

Debemos destacar:

  • El ácido oleico, ácido graso monoinstarurado presente en el aceite de oliva
  • El ácido linoleico, presente en los aceites de semillas
  • El ácido eicosapentanoico (EPA) y el ácido docosahexanoico (DHA), presentes en grasas de pescado. Se denominan ácidos grasos omega 3.

Dentro de los ácidos grasos, algunos de ellos son imprescindibles para el cuerpo humano, ya que no puede sintetizarlos por sí mismo, por lo que deben ser aportados en la dieta.

Los ácidos grasos esenciales son el ácido linoleico y el ácido linolénico.

Fosfolípidos

Los fosfolípidos son grasas que contiene en su composición ácido fosfórico.

Están formadas por dos zonas bien diferenciadas: una cabeza hidrofílica o soluble e agua y una cola hidrofóbica o insoluble en agua.

Esta característica particular le confiere a la estructura su característica doble polaridad.

Entre los fosfolípidos más frecuentes destacamos:

  • Fosfoglicéridos, formadoas por ácido fosfórico y glicerol
  • Fosfatidilcolina, formada por ácido fosfórico y colina
  • Fosfatidilserina, formada por ácido fosfórico y serina
  • Fosfatidiletanolamina, formada por ácido fosfórico y etanolamina
  • Esfingomielinas
  • Cardiolipinas

A pesar de formar parte de todas las membranas celulares, los fosfolípidos no son importantes como tal en la dieta.

Colesterol

Es una molécula compleja, formada por 4 anillos y una cadena alargada. Forma ésteres con ácidos grasos.

Es el componente estructural de las membranas celulares y precursor de otras moléculas como hormonas sexuales, vitamina D y ácidos biliares.

El colesterol es una molécula exclusiva del reino animal: no está presente en ningún vegetal.

Además del colesterol de la dieta, el colesterol puede sintetizarse en el hígado, por lo que no es un nutriente esencial en la dieta.

Funciones de las Grasas

Funciones de los Triglicéridos

Los triglicéridos deben sus principales características a los ácidos grasos que las componen.

  • Energéticos: proporcionan 9 calorías por gramo, más del doble de lo que proporcionan los hidratos de carbono
  • Aportan ácidos grasos esenciales
  • Ahorradores de proteína, ya que permiten evitar el uso de proteínas como fuente de energía
  • Facilitan el transporte para proceder a la absorción de vitaminas liposolubles
  • Efecto organoléptico: las grasas son responsables de características del alimento como el gusto, olor, etc
  • Efecto saciante, ya que las grasas aumentan el tiempo de vaciado gástrico

Funciones de los Fosfolípidos

  • Forman parte de las membranas celulares
  • Forman parte de membranas neuronales recubiertas con vainas de mielina

Funciones del Colesterol

Forman parte de membranas biológicas junto a fosfolípidos

Es el precursor de otras sustancias:

  • Ácidos biliares, a partir de los cuales se forman las sales biliares, que permiten la eliminación de exceso de colesterol y solubilizar las grasas de la dieta para facilitar su digestión.
  • Hormonas esteroideas. A partir de colesterol se fabrican hormonas sexuales, de la corteza adrenal y algunas placentarias.
  • Vitamina D. El colesterol es necesario en la formación de vitamina D.

Digestión de las Grasas

Digestión de los Triglicéridos

La digestión de las grasas comienza en la boca, gracias a la acción de la lipasa. Su acción es poco importante y sólo sirve de preparación. La masticación contribuye por otro lado a la disgregación de las partículas de grasa en otras más pequeñas.

En el estómago actúa la lipasa gástrica.

Como resultado de la acción de ambas se obtiene glicéridos de cadenas cortas y cadenas medias que son absorbidos en el estómago.

La digestión y absorción se completa en el intestino delgado, duodeno y yeyuno.

Tras el vaciado gástrico la presencia de grasas estimula la hormona colecistoquinina, que provoca la contracción de la vesícula biliar, que a su vez vierte las sales biliares, que solubilizan las grasas.
La lipasa pancreática hidroliza los triglicéridos de cadenas cortas, produciendo ácidos grasos y monoglicéridos.

La absorción se produce en función del tamaño de los ácidos grasos resultantes. Los ácidos grasos de cadena corta se transportan directamente al torrente sanguíneo, mientras que las moléculas más grandes son transportados por el sistema linfático.

Digestión de los Fosfolípidos

Son digeridos en el intestino por acción de la fosfolipasa pancreática.

Puesto que la ingesta de fosfolípidos es baja, su importancia dietética es escasa.

Digestión del Colesterol

La absorción del colesterol es más compleja y lenta que la de los triglicéridos.

El colesterol es atacado por la colesterol esterasa, de origen pancreático, para formar ácido graso y colesterol libre, que puede ser absorbido.

Metabolismo de las Grasas

Metabolismo de los Triglicéridos

Los triglicéridos sirven como fuente energética y pueden ser utilizados por todas las células excepto las del sistema nervioso. Su almacenamiento en los adipocitos permite disponer de reservas energéticas en períodos de ayuno.

Metabolismo del Colesterol

El colesterol absorbido se utiliza en diferentes órganos y estructuras:

  • Membranas celulares
  • Glándulas adrenales
  • Piel
  • Testículos
  • Ovarios
  • Sales biliares

colesterol

Recomendaciones Nutricionales de Grasas

El aporte de grasas en la dieta no debe superar el 30 % del valor energético total.

En relación al tipo de grasas, las grasas saturadas deben suponer menos del 10 % del valor energético total, las grasas insaturadas alrededor del 10 % y el ácido oleico alrededor del 15 %.

En relación al colesterol y de forma general, no debe superarse la ingesta de 300 mg / día, .

En la actualidad el consumo de grasa general es de un 40 – 45 % del valor energético total, mientras que el de colesterol es aproximadamente el doble.

Efectos Fisiopatológicos de las Grasas

Las grasas están directamente relacionadas con la aparición y empeoramiento de enfermedades cardíacas y cardiovasculares, cerebrales, etc.

Cada vez más estudios demuestran su relación, directamente proporcional.

La aterosclerosis es una lesión en las arterias, producida por acumulación de lípidos – principalmente colesterol y ésteres de colesterol- en las paredes de los vasos. Las lesiones con el tiempo crecen, se calcifican y endurecen, disminuyendo la luz del vaso y por tanto la capacidad de irrigación. Estas formaciones se denominan placas de ateroma.

La oclusión puede llegar a ser completa, impidiendo que el tejido reciba sangre en absoluto y el tejido muera. Cuando esto ocurre en arterias delicadas como las el corazón y cerebro, dan lugar a accidentes cardiovasculares y cerebrales.

El colesterol no se encuentra viajando libre en torrente sanguíneo, si no que lo hace unido a lipoproteínas, entre las que destacan 2:

  • HDL o high density lipoprotein, lipoproteínas de alta densidad y
  • LDL o low density lipoprotein, lípoproteínas de baja densidad.

Mientras que el LDL colesterol tiende a acumularse, el HDL colesterol posee propiedades contrarias, protegiendo los tejidos frente al depósito de colesterol.

Los eicosanoides son lípidos que pueden agravar el proceso de formación de placas de ateroma, por modificación del tamaño del diámetro de los vasos sanguíneos y por modificación de la agregación plaquetaria. El acúmulo de plaquetas que acuden al ateroma agrava el mismo cuando éstas se ven agregadas entre sí.

Los ácidos grasos saturados afectan negativamente a la funcionalidad vascular: ácido láurico, palmítico, estárico y mirístico especialmente.

Se encuentran especialmente en alimentos de origen animal: carnes grasas, lácteos enteros, y en algunos vegetales: aceites de coco y palma.

En base a los conocimientos actuales deben consumirse con mucha moderación.

El ácido linoleico tiene efecto inhibidor del colesterol, disminuye el colesterol total y el colesterol LDL.

El ácido oleico, además de disminuir el colesterol LDL, aumenta el colesterol HDL.

Los ácidos grasos omega 3, especialmente el eicosapentanoico y docosahexanoico no tiene efecto sobre el colesterol HDL ni LDL.

Su importancia radica en la capacidad del organismo para formar a partir de ellos ciertas sustancias que producen vasodilatación e inhiben la agregación plaquetaria, lo que evita la formación de placas de ateroma.

Es importante destacar que todo proceso de obtención de energía en presencia de oxígeno u oxidación celular, produce productos derivados, algunos muy reactivos, y a los que se denomina radicales libres, con gran capacidad oxidante.

En este sentido, los radicales libres producidos serán mayores en tanto en cuanto mayor sea el número de insaturaciones de los ácidos grasos de nuestra dieta. Así, los ácidos grasos que producirían más radicales libres serían los insaturados omega 3, seguidos del linoleico y el oleico.


Otras entradas del Curso de Nutrición y Dietética:

Introducción a la NutriciónProteínas
Absorción de NutrientesHidratos de Carbono
Digestión de NutrientesGrasas, Lípidos
Utilización y metabolismo de NutrientesSales Minerales
 El AguaVitaminas

Y además: realice la Autoevaluación con una Prueba de valoración conocimiento


Ayude a difundirlo:

Compártelo con tus amig@s:
vitaminas

Vitaminas


Vitaminas

Las vitaminas son sustancias esenciales para el desarrollo de las funciones corporales: no pueden ser sintetizados, por lo que deben aportarse en la dieta.

Actúan como catalizadores químicos, acelerando reacciones químicas o permitiendo que se produzcan. Se requieren en pequeñas cantidades.

No aportan calorías al organismo. Son completamente indispensables para la vida.
Algunas contienen nitrógeno, oxígeno o azufre.

vitaminas

Clasificación de las Vitaminas

Las vitaminas se clasifican según su solubilidad en agua, en vitaminas hidrosolubles y vitaminas liposolubles o no hidrosolubles. En la actualidad se conocen 13 vitaminas.

Vitaminas Liposolubles

Las vitaminas liposolubles son 4: A, E, D y K.

  • No contienen nitrógeno
  • Son solubles en grasa, por lo que se transportan y se encuentran en alimentos ricos en grasa
  • Bastante estables al calor
  • Pueden almacenarse en el cuerpo, junto a las reservas grasas, por lo que no se requiere ingesta diaria estricta
  • Se absorben mediante sales biliares en el intestino delgado
  • Al no contener nitrógeno, no producen urea, por lo que no se excretan en la orina

Vitaminas Hidrosolubles

Las vitaminas hidrosolubles son 9: B1 o tiamina, B2 o riboflavina, B6 o piridoxina, B12 o cianocobalamina, C o ácido ascórbico, ácido fólico, biotina, ácido pantoténico y niacina.

  • No se almacenan, a excepción de la vitamina B12, que se almacena en el hígado.
  • El exceso, al ser soluble en agua, se elimina en la orina.
  • Requieren de una ingesta adecuada a diario
  • Contienen nitrógeno en su molécula -excepto la vitamina C-

Las vitaminas, en general, se encuentran en multitud de alimentos, casi en todos ellos existe una cierta cantidad en alguna vitamina. A la vez que no hay ningún alimento que las contenga todas ni en las proporciones equilibradas. De ahí la importancia de una dieta variada que permita el adecuado aporte en las diferentes proporciones de las variadas vitaminas.

Las deficiencias vitamínicas más frecuntes son las producidas por déficits de vitamina C, B12, D y ácido fólico.

La vitamina C se encuentra en vegetales y frutas frescas, por lo que un aporte insuficiente y no diario compromete seriamente su suministro.

La vitamina B12 se encuentra principalmente en huevos, pescado e hígado. Algunas dietas como las vegetarianas son deficitarias en vitamina B12.

La vitamina D se encuentra también en huevos, hígado y pescados, aunque es necesario mayor aporte para cubrir las recomendaciones. Sin embargo, puede sintetizarse a partir de otras sustancias siempre y cuando intervenga la acción de sol en la piel. Esto a veces no es posible, por lo que pueden producirse carencias.

El ácido fólico se encuentra en verduras de hoja verde intenso e hígado, alimentos que suelen tener baja frecuencia de consumo.

Funciones de las Vitaminas

En general, todas las vitaminas son fundamentales en la regulación de procesos metabólicos.

Funciones de las Vitaminas Liposolubles

Funciones de las Vitaminas Hidrosolubles

Digestión y Absorción de las Vitaminas

La digestión de las vitaminas no requiere de ningún proceso digestivo, salvo alguna excepción que no merece mención.

Las vitaminas hidrosolubles son transportadas disueltas en el agua, mientras que las liposolubles lo hacen en las grasas.

La vitamina B12 se absorbe en el íleon asociado al denominado factor intrínseco, secretado previamente en el duodeno y yeyuno.

Carencia de Vitaminas

Ingestas recomendadas de Vitaminas

Ingestas Dietéticas de Referencia para Población Española 2010:

ingesta de referencia españa

Ingesta Dietética de Referencia para población española. 2010. FESNAD.


Otras entradas del Curso de Nutrición y Dietética:

Introducción a la NutriciónProteínas
Absorción de NutrientesHidratos de Carbono
Digestión de NutrientesGrasas, Lípidos
Utilización y metabolismo de NutrientesSales Minerales
 El AguaVitaminas

Y además: realice la Autoevaluación con una Prueba de valoración conocimiento


Ayude a difundirlo:

Compártelo con tus amig@s:
agua

El Agua


Agua : función en el cuerpo humano

El agua es el principal componente del ser humano. En el adulto, entre un 55 – 60 % del peso corporal total es agua.

El agua e el cuerpo humano se encuentra repartida como agua intracelular y como agua extracelular.

Las fuentes de agua en el cuerpo humano se pueden dividir en tres:

  1. Líquidos ingeridos, principalmente agua potable y que supone la principal fuente de agua de la dieta.
  2. Agua de los alimentos y de los platos preparados, que puede suponer de 700 a 1000 ml diarios.
  3. Agua del metabolismo, producida durante el metabolismo de nutrientes, puede alcanzar los 300 ml diarios.

A la vez, el cuerpo humano posee un gasto diario que en los diferentes órganos y sistemas es:

  • Sistema renal: el agua perdida a través de la orina es de uno 1,5 litros diarios
  • Sistema pulmonar: el vapor de agua espirado supone alrededor de 400 ml diarios
  • Cutánea: a través la transpiración de la piel se pierden alrededor de 350 ml diarios
  • Aparato Digestivo: en las heces se pierden unos 150 ml diarios

agua

Funciones del Agua

Posee muchas funciones, entre las que podemos destacar:

  • Medio de disolución de todos los líquidos corporales, secreciones, sangre, linfa, jugos digestivos, etc
  • Ayuda al proceso digestivo, permitiendo la disolución de los nutrientes
  • Posibilita el transporte de nutrientes a las células, y la eliminación de sus sustancias de desecho
  • Contribuye a la regulación de la temperatura corporal

Digestión y Metabolismo

El agua no es oxidada ni metabolizada. No aporta calorías.

No necesita ser digerida, sino que se absorbe directamente, principalmente en el intestino delgado.

El agua absorbida cumple las diferentes funciones, siendo el exceso eliminado por la orina.

Ingesta hídrica

El exceso de ingesta de líquidos producirá un exceso que se elimina por vía renal en la orina, produciéndose una orina abundante denominada orina diluida.

Cuando no se ingieren líquidos en cantidad suficiente, el sistema renal responde filtrando más y produciendo una orina más concentrada. En situación normal, se desencadenan una serie de procesos destinados a producir sensación de sed, que calmaría la insuficiencia de líquidos. Estos procesos se ven alterados con la edad, siendo en la vejez la sensación de sed mucho más leve, lo que hace recomendar especialmente a los ancianos que beban aunque no tengan sed.

Situaciones que pueden aumentar la eliminación de agua:

  1. Pérdidas renales: se produce mayor eliminación con dietas y alimentos ricos en proteína, ya que requieren de más líquido para eliminar la urea resultante de su metabolismo.
  2. Pérdidas cutáneas: la temperatura ambiental elevada, la fiebre y el ejercicio producen un aumento de las pérdidas
  3. Pérdidas pulmonares: el ejercicio físico aumenta la función respiratiria, lo que hace que se elimine más vapor de agua a través de la espiración
  4. Pérdidas digestivas: en caso de diarreas

Situaciones que pueden disminuir la eliminación de agua:

Normalmente no se producen situaciones en las que se produzcan defectos en la eliminación a menos que se padezcan de enfermedades, por ejemplo renales.

Regulación de la sed: balance hídrico

El organismo posee mecanismos para regular el balance hídrico:

  • Provocar o inhibir la sensación de sed
  • Aumentar o disminuir la retención de agua a nivel renal, produciendo una orina más diluida o más concentrada

La regulación de la sed se produce a nivel hipotalámico, en el denominado centro de la sed. La regulación de la retención renal depende de la ADH u hormona antidiurética, producida también en el hipotálamo, y de la aldosterona, una hormona de la glándula suprarrenal.

Requerimientos y Necesidades Nutricionales de líquidos

La ingesta excesiva de agua en condiciones normales sin enfermedad, no se acumula, simplemente se elimina.

En caso de que el proceso normal no pueda producirse se comenzaría a acumular agua produciendo edemas y aumento de la presión arterial.

El agua retenida puede aumentar también por un consumo excesivo de sal.

Una deficiente ingesta produce deshidratación, que puede producir problemas importantes en un par de días incluso con deshidratación ligera.

Los aportes de aguas y líquidos en general, pueden provenir de múltiples fuentes.

  • Agua mineral, de manantial, potabilizada
  • Agua con gas, gaseosas, bebidas refrescantes aromatizadas, de extractos y de zumos de frutas naturales, productos en polvo para la preparación de bebidas
  • Zumos de frutas naturales y conservados, zumos azucarados, concentrados de zumo

Los zumos de frutas deben consumirse exclusivamente recién preparados, y nunca comercializados, incluyendo los zumos sin azúcar añadido y los refrigerados.


Otras entradas del Curso de Nutrición y Dietética:

Introducción a la NutriciónProteínas
Absorción de NutrientesHidratos de Carbono
Digestión de NutrientesGrasas, Lípidos
Utilización y metabolismo de NutrientesSales Minerales
 El AguaVitaminas

Y además: realice la Autoevaluación con una Prueba de valoración conocimiento


Ayude a difundirlo:

Compártelo con tus amig@s:
aparato digestivo

Digestión de Nutrientes


Digestión de Nutrientes

Los nutrientes son las sustancias contenidas en los alimentos y que permiten al organismo obtener energía y mantener las estructuras corporales.

Según la cantidad a aportar en la dieta, se clasifican en macronutrientes (hidratos de carbono, grasas y proteínas) y micronutrientes (sales minerales y vitaminas).

Además se clasifican en nutrientes esenciales, los que no pueden fabricarse en el cuerpo y deben ingerirse, y no esenciales, los que pueden elaborarse en el organismo a partir de otros nutrientes.

Los nutrientes se someten en el organismo a los procesos digestivos que permitirán su utilización y aprovechamiento.

Los procesos digestivos incluyen la masticación, digestión gástrica, digestión intestinal, absorción intestinal y eliminación fecal.

Una vez absorbidos son distribuidos a los diferentes órganos, siendo eliminadas las sustancias no útiles mediante la excreción.

Partes implicadas en la Digestión

En la digestión está implicada:

  1. El tubo digestivo, que comprende cavidad bucal, faringe, esófago, intestino delgado e intestino grueso.
  2. Los órganos accesorios: glándulas salivares, hígado, vesícula biliar y páncreas.
aparato digestivo

Aparato digestivo. partes y órganos principales

La digestión implica dos tipos de procesos:

  1. Digestión mecánica, en la que intervienen los músculos de la boca y de las paredes del tubo digestivo, contracciones y relajaciones voluntarias e involuntarias respectivamente.
  2. Digestión química, que implica la acción de sustancias específicas denominadas enzimas segregadas por los órganos accesorios:
  • Glándulas salivares: secretan saliva, que contiene amilasa salivar o ptialina
  • Glándulas gástricas: en la pared del estómago, segregan varias sustancias: ácido clorhídrico, pesinógeno y factor intrínseco
  • Páncreas: secreta jugo pancreático, que contiene enzimas digestivos
  • Glándulas tubulares: en las paredes del intestino delgado, secretan el jugo intestinal
  • Hígado: secreta la bilis, sales y pigmentos biliares. La bilis y pigmentos se acumulan en la vesícula biliar.

El intestino delgado finaliza ambas digestiones, mecánica y química, mediante la presencia de células específicas que permiten la absorción de los nutrientes.

Digestión en la boca

La cavidad bucal está formada por el paladar, los dientes, los carrillos y la lengua en la que se encuentran las papilas gustativas.
En la cavidad bucal se produce la recepción del alimento, masticación, insalivación e inicio de la deglución.

Digestión en la faringe

Es una estructura tubular. La entrada del bolo alimenticio en la faringe pone en marcha un complejo sistema reflejo que evita el paso del alimento al sistema respiratorio.

Digestión en el esófago

Se extiende desde la faringe al estómago, que posee dos válvulas o esfínteres:

  1. superior o píloro, que impide la salida del bolo hacia la boca,
  2. inferior o cardias que permite la entrada del bolo en el estómago y evita su reflujo hacia la boca.

Actúa como conducto de paso del bolo alimenticio hasta el estómago, aunque también se contrae para facilitar la deglución y trasladar el bolo hacia el estómago.

En esta fase se ha producido una digestión mecánica en la cavidad bucal, al ser triturado el alimento e impulsado mediante la deglución hacia el esófago; y una digestión química iniciada por la amilasa salivar, que digiere parcialmente el almidón.
El proceso se facilita mediante el mucus salivar, que lubrifica y humedece el bolo facilitando la deglución.

Digestión en el estómago

Situado en el abdomen, con forma de bolsa alargada. Posee dos esfínteres: uno superior o cardias, que impide la salida del bolo hacia la boca, y otro inferior o píloro que evita el vaciado gástrico hasta el momento adecuado.

Esta fase produce una digestión mecánica en la que las paredes del estómago se contraen y relajan permitiendo la mezcla del bolo con las distintas enzimas y jugos gástricos. El vaciamiento del estómago también es considerado una digestión mecánica.

También se produce digestión química. En ella, el pepsinógeno se transforma en pepsina por acción del ácido clorhídrico. La pepsina digiere las proteínas a péptidos más sencillos.

Además se secreta mucus, que permite proteger las paredes del estómago del ácido clorhídrico y la pepsina, y factor intrínseco, que permitirá la absorción de vitamina B12.

estómago

Estómago

Digestión en el intestino delgado

En el intestino delgado es donde se produce principalmente la absorción de nutrientes.

Es una estructura alargada tubular de unos 6 metros de largo y que consta de 3 partes: duodeno, yeyuno e íleon

La digestión mecánica se debe a los movimientos peristálticos y contracciones musculares que mezclan, segmentan el bolo y lo empujan.

Intestino delgado

Intestino delgado

Enzimas digestivas

La digestión química se lleva a cabo mediante la secreción de enzimas de tres orígenes diferentes:

1. Bilis

Las sales biliares son producidas en el hígado y almacenadas en la vesícula biliar.
Emulsionan las grasas para separarlas en porciones más pequeñas que pueden ser atacadas por las enzimas o ser absorbidas directamente.

2. Jugo Pancreático

páncreas

Páncreas

Secretado por el páncreas, es extremadamente alcalino para neutralizar el bolo ácido o quimo procedente del estómago. Contiene gran cantidad de enzimas:

  • Amilasa pancreática, que degrada el almidón en moléculas más sencillas: oligosacáridos y disacáridos
  • Tripsina, quimiotripsina, que degradan proteínas hasta polipéptidos y dipéptidos
  • Carboxipeptidasa pancreática e intestinal, que convierte polipéptidos en estructuras más sencillas: oligopéptidos y dipéptidos
  • Aminopeptidasa pancreática e intestinal, que convierte polipéptidos en estructuras más sencillas: oligopéptidos y dipéptidos
  • Lipasa pancreática, degrada las grasas a monoglicéridos
  • Colipasa pancreática, que degrada las grasas a ácidos grasos y colabora con la lipasa
  • Iones bicarbonato, que neutralizan la acidez del ácido clorhídrico producido en el estómago

3. Enzimas de la Mucosa Intestinal

Son enzimas presentes en las membranas celulares del tubo digestivo, principalmente del intestino delgado.

  • Enteroquinasa, activa el tripsinógeno en tripsina
  • Lactasa, que degrada la lactosa a glucosa y galactosa
  • Glucoamilasa, que degrada oligosacáridos pequeños y polisacáridos
  • Sacarasa e Isomaltasa, transforman la sacarosa a glucosa y fructosa. Degrada oligosacáridos en unidades de glucosa.
  • Maltasa, hidroliza maltosa a dos unidades de glucosa
  • Peptidasas, que degradan di y tripéptidos en sus aminoácidos
intestino grueso

Intestino grueso

Digestión en el intestino grueso

Es un conducto tubular de casi 2 metros de longitud.
Se divide en colon ascendente, colon transversal y colon descendente.

En el intestino grueso apenas ocurre digestión química, siendo muy importante la digestión mecánica.

Los movimientos propulsivos y contracciones musculares facilitan la reabsorción de agua.

En en la porción del colon ascendente donde se encuentran bacterias intestinales se favorece la absorción de ciertas vitaminas.

Además sirve como almacenamiento de desechos previa eliminación al exterior.


Otras entradas del Curso de Nutrición y Dietética:

Introducción a la NutriciónProteínas
Absorción de NutrientesHidratos de Carbono
Digestión de NutrientesGrasas, Lípidos
Utilización y metabolismo de NutrientesSales Minerales
 El AguaVitaminas

Y además: realice la Autoevaluación con una Prueba de valoración conocimiento


Ayude a difundirlo:

Compártelo con tus amig@s:
metabolismo

Utilización de nutrientes


Metabolismo y utilización de nutrientes

Tras la digestión y su posterior absorción, los nutrientes no se dirigen a los mismos órganos, ni en el mismo momento o proporción.

Los diferentes nutrientes digeridos y absorbidos, una vez disponibles en el torrente sanguíneo tienen fundamentalmente dos posibilidades en el cuerpo humano:

  1. Ser almacenados
  2. Ser utilizados u oxidados

metabolismo

Almacenamiento de Nutrientes

Este proceso se produce normalmente tras la ingestión de alimentos.
Tiene como objeto el asegurar unas reservas disponibles en caso de que no se produzca un aporte de ese nutriente en un tiempo prolongado.

El almacenamiento de nutrientes se ve favorecido por períodos largos de ayuno.

Es decir, practicar ayuno favorece el almacenamiento de nutrientes.

Es importante citar que no todos los nutrientes pueden ser almacenados.

Los hidratos de carbono se absorben como glucosa tras el proceso final de digestión. Se almacena en pequeñas cantidades como glucógeno -el equivalente en mamíferos del almidón vegetal- en hígado y músculo y como grasa en el tejido adiposo.

La acumulación de grasas es un proceso fisiológico normal que puede ocurrir incluso con dietas normocalóricas, si se ingiere un exceso de grasas o hidratos de carbono, especialmente simples-.

Las proteínas no pueden ser almacenadas como proteína. En teoría, deben ser oxidadas, produciendo energía o transformadas en grasa para su almacenamiento.

La grasa se acumula como grasa, en el tejido adiposo.

Algunos micronutrientes pueden almacenarse: el hierro, vitamina B12, vitamina D.

Oxidación de Nutrientes

Los macronutrientes -grasas, proteínas e hidratos de carbono- se utilizan para obtener la energía y materiales necesarios que requiere el organismo para su correcto funcionamiento.

La oxidación es el proceso por el que las células obtienen energía. La oxidación de los nutrientes produce como productos finales CO2 que es expulsado por los pulmones y agua, que es reabsorbida. La oxidación de las proteínas produce además urea, que se elimina en la orina.

La oxidación también se produce para el alcohol, si bien no es un nutriente pues no puede obtenerse ningún beneficio estructural en el organismo.

Excreción de Nutrientes

El cuerpo humano debe deshacerse de multitud de sustancias que son tóxicas y que son productos de la multitud de reacciones químicas. Muchas sustancias son degradadas o catabolizadas para poder eliminar los productos resultantes.

También debe encargarse de la eliminación de aquellos nutrientes que ingerimos en exceso y que no pueden almacenarse.

Las vías de excreción son:

  • Pulmones, que se encargan de la eliminación del CO2
  • Riñones, que eliminan el ácido úrico y urea procedentes del metabolismo de las proteínas
  • Hígado, que transforma y elimina en la bilis el colesterol y sustancias farmacológicas
  • Piel, encargada de eliminar en el sudor electrolitos, sustancias nitrogenadas y agua

Otras entradas del Curso de Nutrición y Dietética:

Introducción a la NutriciónProteínas
Absorción de NutrientesHidratos de Carbono
Digestión de NutrientesGrasas, Lípidos
Utilización y metabolismo de NutrientesSales Minerales
 El AguaVitaminas

Y además: realice la Autoevaluación con una Prueba de valoración conocimiento


Ayude a difundirlo:

Compártelo con tus amig@s:
atp

Curso de Introducción a la Nutrición


Introducción a la Nutrición

La Nutrición es la ciencia que se encarga de estudiar los procesos por los que el cuerpo humano recibe y utiliza los nutrientes contenidos en los alimentos, y que son hidratos de carbono, proteínas, lípidos, sales minerales y vitaminas.

La adecuada alimentación permitirá un suministro de nutrientes adecuado, sin deficiencias ni excesos, que ayude a mantener el peso adecuado e impida o retrase la aparición de enfermedades.

Con esta introducción a la nutrición se inicia una serie de varios artículos para explicar las bases fundamentales del metabolismo humano.

Aporte de Energía de Nutrientes y Gasto Energético

El cuerpo humano utiliza los distintos nutrientes en diferente proporción para obtener la energía necesaria.

Sin embargo, el cuerpo humano utiliza distintos tipos de energía:

  • Energía eléctrica, en el sistema nervioso
  • Energía mecánica, en el sistema muscular
  • Energía química, en los procesos biológicos y
  • Energía térmica, para la producción de calor

Las células son capaces de fabricar ese tipo de energía, dependiendo del sistema en que se encuentren, y a partir del denominado ATP o adenosin trifosfato.

atp

El ATP es una molécula presente o que puede formarse en todas las células, y a partir de la cual se puede producir los diferentes tipos de energía.

El cuerpo humano utiliza el oxígeno y los alimentos para descomponerlos en nutrientes. El proceso es una combustión en la que como resultado final se obtiene CO2, que es expulsado por los pulmones y agua, que se reabsorbe.

Así, se puede calcular la energía que contienen los nutrientes por combustión con oxígeno. La energía que aportan se mide en kilocalorías o kcal.

Los nutrientes aportan diferente energía:

  • Hidratos de carbono
  • 4 Kcal / g
  • Proteínas
  • 4 Kcal / g
  • Lípidos
  • 9 Kcal / g

Aunque el alcohol no es un nutriente aporta calorías: 7 Kcal / g. La energía aportada por el alcohol no pueden ser utilizada como nutriente, por lo que a las calorías se les denominas calorías vacías.

Sistema Digestivo

Formado por el tubo digestivo y las denominadas glándulas anejas: glándulas salivares, páncreas e hígado.

Incluye todas las estructuras necesarias para preparar los nutrientes para ser absorbidos por el organismo.

Sistema Respiratorio

Permite captar oxígeno necesario para el proceso de oxidación celular, necesario para obtner energía.

Sistema Renal, Sistema Respiratorio e Hígado

Se encargan de la excreción de los deshechos y sustancias resultantes de las reacciones celulares. El Sistema respiratorio elimina sustancias gaseosas (CO2), el Sistema renal sustancias solubles en el agua de la orina, y el hígado las sustancias grasas, a través de la bilis.

Sistema Inmunitario

Se encarga de la defensa del organismo frente a agresiones externas e internas.

Sistema Endocrino

Regula todos los procesos metabólicos.

Sistema Circulatorio

Responsable de la distribución de todos los nutrientes por el organismo, así como de la recolección de los productos de deshecho a los sistemas de excreción: sistema respiratorio, sistema renal e hígado.

Sistema Linfático

Transporta gran parte de las grasas hacia el torrente circulatorio.

Sistema Nervioso

Encargado de coordinar entre sí y regular el resto de procesos.

Gasto Energético

El cuerpo humano necesita una cantidad de energía determinada, y que se divide en:

  1. Metabolismo basal
  2. Actividad física
  3. Termogénesis inducida por la dieta

1.- Metabolismo Basal

El metabolismo basal es la cantidad de energía mínima necesaria para mantener el cuerpo con todas las funciones vitales. El equivalente más parecido es el sueño, en el que sólo las funciones vitales mínimas están conservadas.

El metabolismo basal depende de 4 variables:

  • Es mayor en hombres que mujeres
  • Disminuye conforme aumenta la edad
  • Es mayor en los períodos de máximo crecimiento
  • Es constante para el mismo individuo

Es importante resaltar este último punto: el metabolismo basal, es decir las necesidades de energía mínimas para la misma persona, se mantienen bastante constantes a lo largo de su vida, y si no existen variaciones de peso grandes. Variaciones en nuestras necesidades indicarían un funcionamiento de nuestros órganos a diferentes velocidades, lo cual no es cierto y sería síntoma de nua enfermedad.

2.- Actividad Física

Otro de los factores a tener en cuenta en el gasto total de un individuo es su actividad física. A mayor actividad física, mayor gasto de energía y por tanto mayores necesidades de nutrientes y alimentos.

A diferencia del Metabolismo basal que no es modificable ni controlable, la actividad física puede controlarse, modificarse, intensificarse, etc.

3.- Termogénesis inducida por la dieta

Es la energía necesaria para el desarrollo de todos los procesos de digestión y metabolismo, así como la energía disipada o perdida en forma de calor. Su escaso valor la hace despreciable en los cálculos habituales.

Estructuras corporales y composición corporal

El cuerpo humano está formado aproximadamente por un 60-65 % de agua en la etapa adulta.
El contenido graso corporal es casi del doble en la mujer, mientras el hombre posee más masa muscular.

Agua

Es el elemento que se encuentra en mayor proporción. No es un nutriente en sí ya que no se digiere ni aporta energía, pero es imprescindible para la vida.

Es necesaria para todos los procesos celulares, de digestión, excreción, etc.

Un defecto produce deshidratación que debe tratarse para evitar daños irreversibles. De igual forma, un exceso produce edemas o retenciones de agua extracelular.

Proteínas

Permiten el movimiento tanto del cuerpo como de los órganos como el corazón. Entre las más importantes destacan:

  • Queratina, en la piel, pelo y uñas
  • Colágeno, muy abundante y presente en huesos, dientes, tendones, cartílago
  • Elastina, en los vasos sanguíneos
  • Actina y Miosina, proteínas contráctiles encargadas de la contración muscular

Las necesidades de proteínas son mayores en etapas de crecimiento, gestación, lactancia, niñez y adolescencia. Por supuesto, el adulto requiere de una cantidad de proteínas necesaria para el mantenimiento de las estructuras.
Las enfermedades graves y operaciones, también aumentan las necesidades de proteínas.

Lípidos o Grasas

Las grasas tiene en el cuerpo humano diferentes funciones en función de el tipo de grasa.
El tejido adiposo tiene en el organismo dos funciones principales:

  1. Reserva energética
  2. Protección de las vísceras y órganos internos

Como hemos visto, cada gramo de grasa de nuestro organismo son 9 calorías. En las situaciones en que una inadecuada alimentación, ayuno, etc, el cuerpo utiliza la grasa corporal para obtener energía y mantener sus funciones vitales o metabolismo basal.

Además, la grasa alrededor de algunas vísceras, sirve como protección de las mismas.

La distribución corporal en el hombre y la mujer, al igual que su porcentaje, es diferente. En la mujer la grasa alcanza un 25-30 % del peso corporal, y se distribuye en caderas y muslos; en el hombre el porcentaje graso es alrededor de 15-20%, y se distribuye en el abdomen y tórax.

Cabe destacar los fosfolípidos y colesterol como moléculas que permiten la formación de las membranas celulares, es decir las paredes que rodean cada una de nuestras células.

Sales Minerales

Representan del 5 al 6 % del peso corporal total de un adulto. Los más importantes son el calcio y el fósforo, presentes en las estructuras óseas. otros minerales importantes son el sodio, el potasio, cloro.

Regulación del Metabolismo

El metabolismo en un complejo sistema de reacciones químicas que se producen en el organismo en las células. En las reacciones químicas se utilizan enzimas reguladas a su vez por las diferentes hormonas.

El metabolismo comprende dos tipos de situaciones:

Anabolismo

Son el conjunto de reacciones destinadas a la creación de nuevas células, estructuras y tejidos, o a la síntesis de nuevos compuestos.

Catabolismo

Implica la degradación de sustancias celulares, normalmente para la obtención de energía.
Otras entradas del Curso de Nutrición y Dietética:

Introducción a la NutriciónProteínas
Absorción de NutrientesHidratos de Carbono
Digestión de NutrientesGrasas, Lípidos
Utilización y metabolismo de NutrientesSales Minerales
 El AguaVitaminas

Y además: realice la Autoevaluación con una Prueba de valoración conocimiento


Ayude a difundirlo:

Compártelo con tus amig@s:
absorcion intestinal

Absorción de Nutrientes


Absorción de Nutrientes

La absorción de los nutrientes consiste en el paso de las moléculas a través de las membranas celulares para su posterior distribución por la sangre y la linfa.

Desde el punto de vista digestivo, la importancia de la absorción radica en el intestino delgado, al igual que la digestión se produce principalmente en el estómago.

Las amilasas salivares apenas comienzan la digestión parcial de almidones, por lo que la digestión en la boca no es importante.

Tipos de absorción de nutrientes

El fin de la digestión es romper las diferentes sustancias en otras más pequeñas, de forma que las enzimas y jugos digestivos puedan atacar las moléculas y romperlas en otras más sencillas.

Una vez los alimentos son digeridos y sus nutrientes separados en sus porciones más pequeñas es necesario absorberlos para inc

A nivel celular, existen varios tipos de absorción de nutrientes:

  1. Difusión pasiva: el nutriente atraviesa la membrana celular a favor de un gradiente de concentración, es decir fluye a la parte donde hay menos concentración. Normalmente ocurre sin gasto de energía.
  2. Difusión facilitada: el nutriente es transportado por moléculas transportadoras de la membrana celular, que lo introducen en la célula. Normalmente ocurre sin gasto de energía, aunque implicando la modificación en la concentración de otras sustancias o implicando su uso.
  3. Transporte activo: se requiere energía para realizar el proceso, ya que se introduce la molécula en contra de un gradiente de concentración en el medio celular interno mayor.
  4. Pinocitosis: algunas moléculas de gran tamaño pueden ser englobadas directamente por la membrana celular e incluirlas en sus estructuras.

Factores que influyen en la absorción

La absorción de nutrientes se ve afectada por multitud de factores, entre los que destacan:

  1. propiedades físicas y químicas de la propia molécula, por ejemplo su solubilidad en agua o en grasas
  2. presencia de otros nutrientes: por ejemplo la presencia de vitamina C aumenta la absorción de hierro; los fitatos impiden la absorción de calcio; etc
  3. presencia de otros compuestos: la fibra capta sales minerales e impide su uso
  4. presencia de fármacos, que pueden interaccionar en la absorción
  5. el estado de salud del individuo

Absorción de Nutrientes

La absorción de nutrientes en el intestino es un proceso facilitado por la enorme superficie de absorción disponible:

Las células del intestino poseen estructuras en forma de dedos denominadas microvellosidades que les permiten aumentar la superficie de contacto con la luz del intestino, y con ello aumentar la absorción.

Además, estas células se encuentran a su vez dispuestas en forma de vellosidades, lo que multiplica su eficacia.

vellosidades intestinales

El intestino delgado dispone de 3 partes bien diferenciadas: duodeno, que es la parte en la que desemboca el estómago, yeyuno, la porción media e íleon o porción final y que desemboca en el intestino grueso.

La primera parte o duodeno mide tan sólo unos 18 a 20 centímetros. El yeyuno se calcula entre 2 y 4 metros, siendo el resto la parte correspondiente al íleon, hasta los 6 ó 7 metros que alcanza de longitud un intestino normal adulto.

Nutrientes absorbidos en el duodeno

  • Sales minerales: hierro, calcio, zinc y magnesio
  • Nutrientes energéticos: algunos monosacáridos, aminoácidos y productos de digestión de las grasas
  • Vitaminas: A, E, ácido fólico, tiamina y riboflavina

Nutrientes absorbidos en el yeyuno

  • Nutrientes energéticos: la mayoría de ellos: monosacáridos, aminoácidos y productos de digestión de las grasas
  • Sales minerales: sodio, potasio y cloro
  • Agua

Nutrientes absorbidos en el íleon

  • Sales minerales: sodio, potasio y cloro
  • Vitaminas: B12 y K
  • Sales biliares, que son reabsorbidas y reutilizadas
  • Agua
  • Vitaminas previamente no absorbidas
  • Nutrientes energéticos en pequeñas cantidades

El intestino grueso no es muy importante en cuanto a absorber nutrientes, si bien es vital a la hora de reabsorber el agua y sales minerales que pueden ser reutilizados, principalmente sodio y potasio.
También absorbe una porción de vitamina K y biotina.


Otras entradas del Curso de Nutrición y Dietética:

Introducción a la NutriciónProteínas
Absorción de NutrientesHidratos de Carbono
Digestión de NutrientesGrasas, Lípidos
Utilización y metabolismo de NutrientesSales Minerales
 El AguaVitaminas

Y además: realice la Autoevaluación con una Prueba de valoración conocimiento


Ayude a difundirlo:

Compártelo con tus amig@s:
minerales

Minerales o Sales Minerales


Sales Minerales: Clasificación, Funciones, Recomendaciones

El ser humano además de estar compuesto de materia orgánica está formado en una pequeña parte de materia inorgánica: sales minerales.

Los minerales, al igual que las vitaminas, se necesitan en muy pequeñas cantidades, pero son esenciales, por lo que deben aportarse en la dieta.

Este artículo recopila la clasificación de minerales, sus funciones, fuentes alimentarias y sus ingestas recomendadas.
sales minerales

Clasificación de las Sales Minerales

Las sales minerales se pueden clasificar de varias formas. Atendiendo a las necesidades corporales, se pueden clasificar en:

  1. Los macrominerales, que deben aportarse en cantidad superior a 100 mg diarios.
    Son el calcio, cloro, fósforo, potasio, sodio y magnesio.
  2. Los microminerales u oligominerales, que poseen recomendaciones menores de 100 mg diarios. De entre los microminerales destacan el zinc, cobalto, cobre, cromo, flúor, hierro, manganeso, selenio y yodo.

Además existen elementos otros minerales contaminantes, como el mercurio, plomo, bario, litio, cadmio, estroncio, berilio, boro, rubidio, arsénico, aluminio, etc. que se acumulan en los tejidos produciendo toxicidad.

Las fuentes alimentarias de minerales son muy variadas: tanto los alimentos de origen animal como vegetal aportan minerales y en la mayoría de las zonas el agua de bebida contiene flúor, yodo y/o cobre.

Como en el caso de las vitaminas, ningún alimento contiene todos los minerales necesarios, ni en la proporción necesaria.

La única forma de conseguir un adecuado equilibrio entre el aporte de minerales y el gasto es mediante una dieta equilibrada, variada.

Fuentes alimentarias de minerales

Las principales fuentes alimentarias de minerales son:

Funciones de los Minerales

Los minerales poseen función reguladora y estructural. Las funciones de los minerales son extremadamente importantes:
Constituyen y forman parte de tejidos como el hueso o los dientes, realizan la transmisión nerviosa, regulan la permeabilidad de las membranas celulares, el balance hídrico o el equilibrio ácido base. Además forman parte de enzimas que regulan el metabolismo.

Digestión, Absorción y Excreción de Minerales

La digestión de los minerales no requiere de ningún proceso digestivo, aunque presenta ciertas características:

  1. Los minerales no se absorben siempre con la misma facilidad o en su totalidad
  2. Los que se encuentran formando sales solubles en agua -como las de flúor, sodio, potasio y yodo- se absorben fácilmente
  3. La edad hace disminuir la absorción de algunos minerales
  4. Los bajos niveles corporales de algunos elementos producen la estimulación de su absorción, especialmente calcio y hierro
  5. Los minerales pueden interaccionar entre sí y modificar su absorción
  6. Los minerales también pueden interaccionar con otros componentes de la dieta: la vitamina C aumenta la absorción de hierro, mientras que la fibra disminuye la absorción de minerales en general
  7. En el caso del hierro, el hierro hemo procedente de animales se absorbe 5 veces más que el hierro no hemo procedente de vegetales
  8. Algunos fármacos afectan a la absorción de minerales

La excreción de minerales y sus productos puede realizarse por distintas vías, dependiendo del mineral, aunque suelen ser el sudor, las heces y la orina las formas preferentes.

Carencia de sales minerales

Como ocurre con las vitaminas, el insuficiente aporte de un mineral produce una serie de alteraciones que desencadenan con el desarrollo de enfermedades con sus correspondientes síntomas y manifestaciones clínicas.

Entre las deficiencias en minerales más frecuentes se encuentra la deficiencia en hierro, mientras que las deficiencias en sodio o potasio son prácticamente imposibles

 

Ingestas excesivas en minerales, o excesiva y continuada en el tiempo puede producir enfermedades, algunas de ellas muy graves e irreversibles.

Está desaconsejado la suplementación de minerales a menos que exista una carencia no tratable de forma dietética.

Consulta con tu Médico, Dietista o Nutricionista profesional antes de tomar cualquier suplemento de minerales.

Ingestas recomendadas de minerales

Ingestas Dietéticas de Referencia para Población Española 2010:

ingesta de referencia españa

Ingesta Dietética de Referencia para población española. 2010. FESNAD.

 


Otras entradas del Curso de Nutrición y Dietética:

Introducción a la NutriciónProteínas
Absorción de NutrientesHidratos de Carbono
Digestión de NutrientesGrasas, Lípidos
Utilización y metabolismo de NutrientesSales Minerales
 El AguaVitaminas

Y además: realice la Autoevaluación con una Prueba de valoración conocimiento

 


Ayude a difundirlo:

Compártelo con tus amig@s:
proteinas

Proteínas y alimentos proteicos


Proteínas

Las proteínas son el único macronutriente que incluye nitrógeno en su estructura molecular, además de carbono e hidrógeno. Esto hace que en su oxidación además de CO2 y agua, se produzca un compuesto nitrogenado derivado: la urea.

Están compuestas por unidades denominadas monómeros, en número y posición variable. Estos monómeros son aminoácidos.

Los aminoácidos con importancia en el ser humano son 20.

A partir de 20 aminoácidos el cuerpo sintetiza la totalidad de las diferentes proteínas.

proteinas

Clasificación de las Proteínas: los aminoácidos

Los aminoácidos se clasifican según la capacidad del cuerpo humano para fabricarlos o no, teniendo que ser incluidos en la dieta.

Los aminoácidos esenciales no pueden ser sintetizados por el organismo y deben ser ingeridos en la dieta.

  • Aminoácidos Esenciales
  • Leucina, Isoleucina, Lisina, Metionina, Valina y Triptófano
  • Aminoácidos No Esenciales
  • Alanina, Prolina, Glicina, Glutamina, Ácido glutámico, Arginina, Cisteína, Histidina, Serina, Ácido aspártico, Asparragina y Tirosina

Funciones de las Proteínas

Las proteínas tienen muchas funciones y no sólo la típicamente conocida relacionada con el mantenimiento de la masa muscular.

  1. Función estructural. Las proteínas forman parte de innumerables estructuras: la queratina del pelo y uñas, colágeno en piel, huesos, tendones y cartílago, elastina en los ligamentos, etc.
  2. Reguladoras: algunas hormonas tiene naturaleza proteica. Las enzimas digestivas y algunos neurotransmisores son proteínas.
  3. Defensa y coagulación: las inmunoglobulinas son proteínas con acción anticuerpo. La protrombina y el fibrinógeno son imprescindibles en el proceso de coagulación.
  4. Transporte. Algunas proteínas como las apoproteínas en el plasma sanguíneo transportan los lípidos. La albúmina transporta ácidos grasos libres, mientras que la hemoglobina es la proteína presente en los glóbulos rojos, encargada de la captación del oxígeno.
  5. Energética. En última instancia, situaciones de estrés, ayuno prolongado, etc, las proteínas pueden ser utilizadas para la obtención de energía

Digestión de las Proteínas

En el estómago, el ácido clorhídrico secretado por las células de las paredes gástricas, transforma el pepsinógeno en su forma activa, la pepsina.

La pepsina gástrica inicia la digestión de proteínas, resultando en una mezcla de polipéptidos y aminoácidos libres.

Tras el vaciado gástrico, la digestión continúa en el duodeno por la acción de enzimas proteolíticos procedentes del páncreas. La presencia de proteínas en el duodeno produce la secreción de enteroquinasa, que transforma el tripsinógeno o forma inactiva, en tripsina.

Como resultado de esta digestión se obtienen pequeños péptidos: tetrapéptidos, tripéptidos y dipéptidos, moléculas proteicas formadas por 4, 3 y 2 aminoácidos respectivamente.
Éstos péptidos son hidrolizados a aminoácidos por la acción de aminopeptidasas, enzimas de las membranas de las células intestinales.

Los aminoácidos obtenidos pasan directamente a la sangre.

Metabolismo de las Proteínas

Las proteínas se digieren y utilizan aproximadamente en un 90 – 95 %.

Una vez digerida, los aminoácidos resultantes pueden ser utilizados en multitud de procesos.
Podemos distinguir dos tipos de procesos, opuestos entre sí:

1. Anabolismo proteico

El anabolismo comprende las acciones destinadas a la creación de estructuras.
El organismo precisa de aminoácidos continuamente para llevar a cabo la formación de proteínas, ya sean por desgaste, por destrucción producida por una patología o para favorecer el crecimiento corporal.

El anabolismo proteico ocurre sólo si en la dieta hay cantidad suficiente de hidratos de carbono y grasas.

2. Catabolismo proteico

El cuerpo utiliza a diario proteínas para desarrollar sus múltiples funciones corporales.
El catabolismo hace referencia a las acciones destinadas al uso de las proteínas y que produce su inevitable degradación.

Puesto que los aminoácidos no pueden almacenarse, los aminoácidos sobrantes son oxidados. Este proceso se da produce en el hígado.
Como resultado se obtienen dos moléculas:

  1. una nitrogenada, con un grupo amino y que formará amoniaco y posteriormente urea, que es excretada en la orina;
  2. y una molécula cetoácida, que puede ser oxidada para producir energía, utilizarse para la creación de aminoácidos no esenciales o ser almacenada directamente como una grasa.

Calidad proteica y valor biológico

Algunos aminoácidos son esenciales en nuestra dieta y deben aportarse porque el cuerpo no puede fabricarlos.

En función de la presencia de esos aminoácidos en los alimentos, los alimentos se clasifican por su valor biológico proteico: las proteínas de los alimentos poseen mayor valor biológico cuanto mejor sea su contenido en aminoácidos esenciales.
El valor biológico se determina por el número de aminoácidos que se incorporan a las estructuras celulares.

Las proteínas de la leche de vaca y el huevo son las que poseen mayor valor biológico. A estas se les atribuye un valor imaginario de 100, a partir del cual se compara el resto de proteínas.

Por importancia de calidad proteica, los alimentos se ordenan de la siguiente forma:

 

  • Alimento
  • Leche y Huevos
  • Pescados y Carnes
  • Legumbres
  • Cereales
  • Valor biológico
  • 100
  • 75
  • 60
  • 50

Complementación proteica

Conociendo el valor biológico de las diferentes proteínas de los alimentos, podemos combinar los diferentes alimentos para obtener una mezcla que contenga aminoácidos esenciales y por tanto mejorar el valor biológico que los alimentos tendrían por sí solos.

En general, las carnes, pescados y legumbres son deficitarias en el aminoácido esencial metionina.

Los vegetales y cereales sin embargo, son deficitarios en lisina.

Mientras que consumir un plato de cereales implica no obtener lisina, y consumir carne implica no obtener metionina, al combinar carne con cereales formamos un plato proteico completo sin déficit de aminoácidos esenciales.

La combinación de ambos alimentos mejora su valor biológico individual, consiguiéndose platos de muy alto valor biológico.

Un ejemplo típico es la complementación de lentejas con arroz. Las lentejas, deficitarias en metionina, aportan lisina -escasa en el arroz-, mientras que el arroz aporta la metionina de que carecen las lentejas.

Aunque un plato sea rico en proteínas, si es deficitario en un aminoácido, especialmente esencial, la síntesis proteica se detiene.
Igual que si contamos con gran cantidad de ingredientes para un plato pero nos falta uno no podemos seguir cocinando.

La complementación proteica es muy importante a la hora de planificar los menús.

Recientes estudios sobre dietas vegetarianas, muestran que podría no ser necesaria la complementación de cereales y vegetales en el mismo plato o comida cuando se trata de dietas bien planificadas.

Requerimientos y Recomendaciones Nutricionales de Proteínas

El aporte de proteínas en la dieta debe suponer al menos el 10 % del valor energético total y menor del 15 %.

Las necesidades varían en función de la edad y el sexo, según la siguiente tabla:

  • Etapa
  • Lactantes
  • Niños
  • Adolescentes masculinos
  • Adolescentes femeninas
  • Hombre adulto
  • Mujer adulta
  • Proteína (g / Kg / día)
  • 1,6 – 2,2
  • 1 – 1,2
  • 0,9 – 1
  • 0,8 – 1
  • 0,8
  • 0,7 – 0,8

Efectos Fisiopatológicos de las Proteínas

El problema más importante es la deficiencia en la ingesta proteica. Los efectos inmediatos más visibles es la detención del crecimiento y la pérdida de masa muscular.

El exceso en la ingesta proteica puede causar alteraciones patológicas que suelen agravarse por proceder de un exceso de ingesta de alimentos proteicos, normalmente carnes, lo que implica un exceso en la ingesta de grasas procedentes de la misma.


Otras entradas del Curso de Nutrición y Dietética:

Introducción a la NutriciónProteínas
Absorción de NutrientesHidratos de Carbono
Digestión de NutrientesGrasas, Lípidos
Utilización y metabolismo de NutrientesSales Minerales
 El AguaVitaminas

Y además: realice la Autoevaluación con una Prueba de valoración conocimiento


Ayude a difundirlo:

Compártelo con tus amig@s: